
Calculating the Cubic Bézier Arc Length
by Elliptic Integrals

Hartmut Henkel, Oftersheim, Germany

14 May 2014

Contents

1 Motivation 1

2 Bézier Curves 2
2.1 Bézier Arc Length . 3

3 Elliptic Integrals 3

4 Root Finding 4

5 Test Setup 5

6 Testing 7
6.1 Observations . 9

7 Conclusion 9

1 Motivation

Cubic Bézier curves are used by many graphics software tools as basis for the construction
of more complex curves [Bartels et al. (1987)]. Each Bézier curve is defined by four control
points: One at each end, plus two points controlling the direction of the curve from and
towards either end point.

One parameter that is often of interest when designing a Bézier curve (or a more
complex curve assembled by chaining of several such curves) is the resulting total arc
length.

For arc length calculation of a curve or “path” the graphics design program Meta-
Post [Hobby, Hoekwater (2014)] uses a “general bisection algorithm to subdivide the path
until obtaining “well behaved” subpaths whose arc lengths can be approximated by simple
means.” Apparently this numerical, iterative method has some limitations in precision,
which is a bit of a pity, since the general numeric precision of MetaPost has been signifi-
cantly increased in the last few years.

Now two things have driven the experiment reported here: Firstly, the MetaPost
source code looks quite opaque in this area, so delving into it seemed to be too tedious.

1

Secondly, there are statements in the net telling that Bézier arc length calculation, if
tried analytically, will require the numerical solving of elliptic integrals. That made the
second point somewhat interesting, since these integrals appear also in the context of
digital IIR filter design [Orchard, Wilson (1997)], which is an interesting application in
communication technology. For filter design there are many publications dealing with
how to calculate elliptic integrals. So maybe it would not be too complicated to use these
for the Bézier application as well?

Don’t expect any mathematical depth or rigidity here. Everything is copied together
from the literature in the internet, to make an experiment basically working, and to see
how an arc length calculation by elliptic integrals would practically behave.

2 Bézier Curves

A cubic Bézier curve z(t) in the plane is a parametric function of a variable (parameter) t,
involving Bernstein polynomials B3

i (t) and four control points zi [Bartels et al. (1987),
Farin (2002)]:

z(t) =
3∑

i=0

B3
i (t)zi, t ∈ [0, 1] (1)

That is, the entire Bézier curve is travelled from point z0 to point z3, when t raises from 0
to 1. The control points zi are normally given to shape the curve:

z0 = (x0, y0), z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) (2)

The Bernstein polynomials are

B3
i (t) =

(
3

i

)
ti(1− t)3−i, i = 0 . . . 3

with binomial coefficients: (
n

i

)
=

{
n!

i!(n−i!) if 0 ≤ i ≤ n

0 else

The four required Bernstein polynomials are:

B3
0(t) = (1− t)3

B3
1(t) = 3t(1− t)2

B3
2(t) = 3t2(1− t)

B3
3(t) = t3

Putting these into Eqn. 1 gives:

z(t) = (1− t)3z0 + 3t(1− t)2z1 + 3t2(1− t)z2 + t3z3

By expanding and sorting t by its powers, the coefficients of the parametric curve

x(t) = a3t
3 + a2t

2 + a1t+ a0
y(t) = b3t

3 + b2t
2 + b1t+ b0

(3)

2

are found:

a0 = x0, b0 = y0
a1 = 3(x1 − x0), b1 = 3(y1 − y0)
a2 = 3(x0 − 2x1 + x2), b2 = 3(y0 − 2y1 + y2)
a3 = −x0 + 3x1 − 3x2 + x3, b3 = −y0 + 3y1 − 3y2 + y3

(4)

2.1 Bézier Arc Length

The arc length L(t) of a general parametric curve in the plane is defined by:

L(t) =
∫ t

0

√
(x′(t))2 + (y′(t))2 dt (5)

The derivatives from Eqn. 3 are:

x′(t) = 3a3t
2 + 2a2t+ a1

y′(t) = 3b3t
2 + 2b2t+ b1

Squaring these equations gives:

(x′(t))2 = (3a3t
2 + 2a2t+ a1)(3a3t

2 + 2a2t+ a1)
= 9a23t

4 + 6a3a2t
3 + 3a3a1t

2 + 6a3a2t
3

+ 4a22t
2 + 2a2a1t+ 3a3a1t

2 + 2a2a1t+ a21
= 9a23t

4 + 12a3a2t
3 + 6a3a1t

2 + 4a22t
2 + 4a2a1t+ a21

(y′(t))2 = 9b23t
4 + 12b3b2t

3 + 6b3b1t
2 + 4b22t

2 + 4b2b1t+ b21

(6)

So the radicand in Eqn. 5 involves t up to the 4th power. A polynomial of fourth order
is used to sort this:

L(t) =
∫ t

0

√
c4t4 + c3t3 + c2t2 + c1t1 + c0 dt (7)

Comparison with Eqn. 6 gives the coefficients ci:

c4 = 9(a23 + b23)
c3 = 12(a3a2 + b3b2)
c2 = 6(a3a1 + b3b1) + 4(a22 + b22)
c1 = 4(a2a1 + b2b1)
c0 = a21 + b21

(8)

Now the task is to solve the integral Eqn. 7.

3 Elliptic Integrals

The Eqn. 7 shows an elliptic integral, which can be read from various remarks where the
calculation of Bézier arc lengths are discussed in the net. That the arc length computation
by solving elliptic integrals is practically doable, has been shown [FitzSimons (1998)].
Checking the section no. 17 about Elliptic Integrals in [Abramowitz, Stegun (1972)] did
not reveal any integral that would obviously fit to Eqn. 7, particularly since the square

3

root expressions appear in the denominator, but not in the numerator. A further internet
search suggested that the publications about elliptic integrals by Roland Bulirsch and
Billie C. Carlson might provide more insight.

Indeed the paper [Carlson (1988)] shows many integrals “[p]” that follow a general
scheme:

[p] = [p1, . . . , pn] =
∫ x

y

n∏
i=1

(ai + bit)
pi/2dt

And with parameters
p1 = p2 = p3 = p4 = 1

this gives the integral of the Third Kind with a polynomial of 4th degree (“quartic case”)
as radicand:

[1, 1, 1, 1] =
∫ x

y
(a1 + b1t

2)1/2(a2 + b2t)
1/2(a3 + b3t)

1/2(a4 + b4t)
1/2dt

=
∫ x

y

√
(a1 + b1t)(a2 + b2t)(a3 + b3t)(a4 + b4t)dt

(9)

This integral can be solved by Eqn. (2.28) from [Carlson (1988)], which involves the
numerical evaluation of “R-functions” RJ , RD, RC , and RF . By the way, Carlson was also
the editor of the Chapter 19 about Elliptic Integrals in the handbook [Olver et al. (2010)]
and [NIST DLMF (2014)] to follow up [Abramowitz, Stegun (1972)].

The Eqn. 9 comes already rather near to Eqn. 7. The task would be to find the four
real roots of the known radicand within Eqn. 7. However there are normally no real roots
in the radicand of Eqn. 5, since it is a sum of two squares. Instead any “normal” roots
will be conjugate complex ones, like (t− a− ib)(t− a + ib) = (f + gt + ht2). Happily a
further search revealed the paper [Carlson (1992)], which covers the case of two pairs of
conjugate complex zeros, included in the general case:

[p1, p2, p2, p1, p5] =
∫ x

y

2∏
i=1

(fi + git+ hit
2)pi/2(a5 + b5t)

p5/2dt

With parameters
p1 = p2 = 1, p5 = 0

this gives the case [1, 1, 1, 1], which looks as follows:

[1, 1, 1, 1] =
∫ x

y
(f1 + g1t+ h1t

2)1/2(f2 + g2t+ h2t
2)1/2dt

=
∫ x

y

√
(f1 + g1t+ h1t2)(f2 + g2t+ h2t2)dt

(10)

The next step now is to find the two pairs of conjugate complex zeros in Eqn. 7 and put
them into Eqn. 10. The paper [Carlson (1992)] further tells how to solve this integral
numerically.

4 Root Finding

To find the coefficients in the radicand of Eqn. 10 from the ci in Eqn. 8, a hopefully
robust root finding algorithm was searched for.

4

Initially numerical root finder programs were checked. The commercial program used
in [FitzSimons (1998)] was out of scope. The Jenkins-Traub method is suggested by
[Press et al. (1992)] as “practically a standard in black-box polynomial root-finders”,
which sounded interesting. The corresponding paper [Jenkins, Traub (1970)] could be
recovered and also the accompanying algorithm no. 493 [Jenkins, Traub (Source, 1970)],
written in Fortran. This root finding algorithm was converted via f2c into C-code and a
Lua interface was written for input and output data.

Another more recent root finder is the program MPSolve [Bini, Fiorentino (2000)].
The program source and documentation [Bini, Fiorentino (2000a)] were downloaded from
the MPSolve homepage, and the sources were compiled into an executable. This is
interfaced to Lua by writing the coefficients 8 into a data file, doing a sys.execute()

call, and parsing the root data file from MPSolve.
Experiments with these numerical solvers showed convergence problems with “patho-

logical” Bézier curves (like cusps). Since polynomials of up to 4th degree can still be
solved analytically, an analytic root solver was searched for. The Fortran program
quartic.f [Kraska (1998)] was tried, and this did find the roots faster and more sta-
bly, effectively bridging the gap between Eqn. 7 and 10. The source was converted to
Lua, and this root finder was used for all further testing.

5 Test Setup

Now all ingredients of the experiment needed to be put together on the PC, running
debian-Linux. Lua was chosen as programming language (http://www.lua.org).

Fortran listings for numerical calculation of the R-functions RC and RJ are given
in [Carlson (1988)], and for RF and RD they are in [Carlson (1987)], respectively. The
source files available for download [Carlson, Notis (1981)] were not used, since these were
older versions and not yet revised. The scanned sources were extracted from the PDF
files and resurrected into Fortran code by use of the free OCR tool gocr, followed by
manual corrections of OCR errors and re-formatting to the original code appearance.
The program f2c was used for syntax and numerical checking. The Fortran sources were
then manually converted to Lua code.

The formulas for numerical calculation of Eqn. 10 were typed in from [Carlson (1992)];
a rather tedious and funny list of variables needs to be calculated in sequence:

ξ1 =
√
f1 + g1x+ h1x2

ξ2 =
√
f2 + g2x+ h2x2

η1 =
√
f1 + g1y + h1y2

η2 =
√
f2 + g2y + h2y2

ξ′1 = (g1 + 2h1x)/(2ξ1)

η′1 = (g1 + 2h1y)/(2η1)

B = ξ′1ξ2 − η′1η2
E = ξ′1ξ

2
1ξ2 − η′1η21η2

θ1 = ξ21 + η21 − h1(x− y)2

θ2 = ξ22 + η22 − h2(x− y)2

5

http://www.lua.org

ζ1 =
√

(ξ1 + η1)2 − h1(x− y)2

ζ2 =
√

(ξ2 + η2)2 − h2(x− y)2

U = (ξ1η2 + η1ξ2)/(x− y)

M = ζ1ζ2/(x− y)

δ11 =
√

4f1h1 − g21
δ22 =

√
4f2h2 − g22

δ12 =
√

2f1h2 + 2f2h1 − g1g2

∆ =
√
δ412 − δ211δ222

∆+ = δ212 + ∆

∆− = δ212 −∆

L2
+ = M2 + ∆+

L2
− = M2 + ∆−

G = 2∆∆+RD(M2, L2
−, L

2
+)/3 + ∆/(2U)

+(δ212θ1 − δ211θ2)/(4ξ1η1U)

RF = RF (M2, L2
−, L

2
+)

Σ = G−∆+RF +B

A(1, 1, 1, 1) = ξ1ξ2 − η1η2
S = (M2 + δ212)/2− U2

Λ0 = δ211h2/h1

Ω2
0 = M2 + Λ0

ψ0 = g1h2 − g2h1
X0 = −(ξ′1ξ2 + η′1η2)/(x− y)

µ0 = h1/(ξ1η1)

T0 = µ0S + 2h1h2

V 2
0 = µ2

0(S
2 + Λ0U

2)

a0 = SΩ2
0/U + 2Λ0U

b20 = (S2/U2 + Λ0)Ω
4
0

H0 = δ211ψ0[RJ(M2, L2
−, L

2
+,Ω

2
0)/3 +RC(a20, b

2
0)/2]/h21

−X0RC(T 2
0 , V

2
0)

[1, 1, 1, 1] = (δ222/h
2
2 − δ211/h21)[ψ0H0 + (Λ0 − δ212)RF]/8

−(3ψ2
0 − 4h1h2δ

2
12)(Σ + δ212RF)/(24h21h

2
2)

+[∆2RF − ψ0A(1, 1, 1, 1)]/(12h1h2) + E/(3h1) (11)

At the end the Bézier arc length integral, Eqn. 11 is calculated and multiplied by the
parameter c4 from Eqn. 8, which got lost in the root finding process.

After the integral calculations for RJ , RD, RC , and RF had been separately tested,
and all equations leading to Eqn. 11 had been carefully double-checked, the arc length
calculation by the elliptic integral (Eqn. 11) worked out of the box, to quite some surprise
(but see the next section).

6

For comparison the Bézier arc length was also calculated numerically by various
means: The algorithm [Gravesen (1997)] using Bézier bisectioning was implemented
in Lua. The numerical integration algorithm CQUAD from the GNU Scientific Li-
brary [Galassi et al. (2013)] also got a Lua interface; it runs with a preset max. relative
error of 10−15. Further, three integration loops were written in Lua, all running over
106 points, evaluating Eqn. 3 by simple summation of hypotenuse pieces, and integrating
Eqn. 7 and Eqn. 10 by the extended trapezoidal rule, the latter to see the influence of
the root finder.

6 Testing

Testing was done from a Lua main file, which included all required library files. Only
single Bézier arcs were used, not chains of several arcs. The goal was to see the effort to
get the arc length right with an error of less than 10−10.

The first example ist is a well-behaved Bézier arc with the following control points (in
Lua notation):

arc = {{0, 0}, {10, 0}, {10, 10}, {0, 0}}

The arc length results by the different methods have no numeric problems and agree well:

Eqn. Method Arc length Steps

2 [Gravesen (1997)] 18.355664405651 55493
7 CQUAD integration 18.355664405651 591
3 Hypotenuse sum 18.355664405642
7 Trapez. rule int. 18.355664405667
10 Trapez. rule int. 18.355664405668
11 [Carlson (1992)] 18.355664405651
2 MetaPost 18.355680480222

The second example shows a Bézier arc with a cusp:

arc = {{0, 0}, {10, 10}, {0, 10}, {10, 0}}

Here the elliptic integral calculation fails.

Eqn. Method Arc length Steps

2 [Gravesen (1997)] 18.284271247463 27102
7 CQUAD integration 18.284271247462 95047
3 Hypotenuse sum 18.28427124746
7 Trapez. rule int. 18.284271247471
10 Trapez. rule int. 18.284271247473
11 [Carlson (1992)] invalid arguments
2 MetaPost 18.284272574347

The third example is almost like the previous one, but it avoids the perfect cusp:

arc = {{0, 0}, {10, 10}, {0, 9.999}, {10, 0}}

This is fine then with the elliptic integral calculation, but precision seems to be spoilt
somehow in comparison to the [Gravesen (1997)] and CQUAD integration:

7

Eqn. Method Arc length Steps

2 [Gravesen (1997)] 18.283649943205 27118
7 CQUAD integration 18.283649943204 102889
3 Hypotenuse sum 18.283649943187
7 Trapez. rule int. 18.283649943231
10 Trapez. rule int. 18.283650066623
11 [Carlson (1992)] 18.283650122795
2 MetaPost 18.283651786214

The fourth example shows a collinar case:

arc = {{0, 0}, {1, 1}, {9, 9}, {10, 10}}

All methods are comfortable with this, the correct result is obviously 10 ·
√

2:

Eqn. Method Arc length Steps

2 [Gravesen (1997)] 14.142135623731 1
7 CQUAD integration 14.142135623731 33
3 Hypotenuse sum 14.142135623731
7 Trapez. rule int. 14.142135623721
10 Trapez. rule int. 14.142135623721
11 [Carlson (1992)] 14.142135623731
2 MetaPost 14.142143253125

The fifth example has two cusps:

arc = {{0, 0}, {20, 20}, {−10,−10}, {10, 10}}

Here again the elliptic integral calculation fails:

Eqn. Method Arc length Steps

2 [Gravesen (1997)] 26.791246264404 56
7 CQUAD integration 26.791246264404 187349
3 Hypotenuse sum 26.791246264389
7 Trapez. rule int. 26.791246264474
10 Trapez. rule int. 26.791246264473
11 [Carlson (1992)] RD hangs
2 MetaPost 26.791253893799

The sixth example is like the previous one, only with a slight shift of the 3rd control
point:

arc = {{0, 0}, {20.001, 20}, {−10,−10}, {10, 10}}

In this case the input parameters for the integral RJ are outside the permissible range
as given in the paper. The latter looked bad at first, since it would mean that elliptic
integrals would only be suitable to calculate well-behaved Bézier arcs.

But then two papers [Gustafson (1982), Carlson (1993)] were found, which describe,
how the R-functions can be replaced by approximation formulas for cases when the input
parameters differ by orders of magnitude. E. g., by using the RJ approximation formula
from [Carlson (1993)], an integral result is found also for this sixth example:

8

Eqn. Method Arc length Steps

2 [Gravesen (1997)] 26.791625779745 933
7 CQUAD integration 26.791625779552 191231
3 Hypotenuse sum 26.79162577952
7 Trapez. rule int. 26.791625779622
10 Trapez. rule int. 26.791625779624
11 [Carlson (1992)] 26.791625779944
2 MetaPost 26.791633411815

Six examples are enough for now.

6.1 Observations

The numerical method [Gravesen (1997)], which uses the Bézier subdivision from Paul
de Casteljau, performes well for any curve shape (e. g., no problem with cusps). But it
needs up to millions of Bézier subdivisions to reach the aspired precision.

The CQUAD integration works hard, needing many iterations when there are cusps,
but it still reaches a sound result.

The simple numeric integrations provide reasonable results, but with 106 steps for one
arc they are very slow.

The elliptic integral calculation works in general rather precisely for “well-behaved”
Bézier curves, but it fails with hard cusp and collinear cases, and with cases near to
these. Some of the R-functions then complain about underflows of their input variables.
A few of these conditions can be remedied by use of the approximation formulas given
in [Carlson (1993)] as proxies before the R-function calls.

7 Conclusion

This experiment would not have been possible without spotting the paper [Carlson (1992)],
which so clearly gives a recipe how to numerically solve the required elliptic integral.

The experiment’s result is, that elliptic integrals can be used in practice for precise
Bézier arc length calculation; this has been shown [FitzSimons (1998)] already some time
ago. Since the required R-functions converge quickly, the method seems to be rather fast.

A problem is, that the R-functions might receive input variables outside their permis-
sible range. Here the approximation formulas [Carlson (1993)] come to an aid for some,
but not for all cases. More and difficult work would be needed to ruggedize the arc length
calculation method by elliptic integrals, to make it usable for general Bézier curves. This
might involve the need to distinguish between a large number of cases, and it is not clear
if this could be done with reasonable effort. It is also unclear how one could predict the
practically achieved arc length precision for a given Bézier curve.

Finally, looking deeper into the arc length calculation method used by MetaPost might
yield an easier improvement in arc length precision there.

9

References

[Abramowitz, Stegun (1972)] Handbook of Mathematical Functions. Edited by Milton
Abramowitz and Irene A. Stegun. Dover Publications, Inc., New York, December
1972.

[Bartels et al. (1987)] An Introduction to Splines for Use in Computer Graphics & Ge-
ometric Modeling. Richard H. Bartels, John C. Beatty, Brian A. Barsky. Morgan
Kaufman Publishers, Inc., Los Altos, California, 1987.

[Bini, Fiorentino (2000)] Design, Analysis, and Implementation of a Multiprecision Poly-
nomial Rootfinder. D. A. Bini and G. Fiorentino. Numerical Algorithms, Volume 23,
2000, Pages 127–173.

[Bini, Fiorentino (2000a)] Numerical Computation of Polynomial Roots Using MPSolve
Version 2.2. Dario Andrea Bini and Giuseppe Fiorentino. January 2000. From the
MPSolve home page at http://www.dm.unipi.it/cluster-pages/mpsolve/.

[Carlson, Notis (1981)] Algorithm 577: Algorithms for Incomplete Elliptic Integrals.
B. C. Carlson and Elaine M. Notis. ACM Transactions on Mathematical Software
(TOMS), Volume 7, Issue 3, Sept. 1981. Algorithm 577, File 577.gz, at http:

//dl.acm.org/citation.cfm?id=355970 and http://www.netlib.org/toms/577.

[Carlson (1987)] A Table of Elliptic Integrals of the Second Kind. B. C. Carlson. Mathe-
matics of Computation, Volume 49, Number 180, October 1987, Pages 595–606. File
S0025-5718-1987-0906192-1.pdf at http://www.ams.org.

[Carlson (1988)] A Table of Elliptic Integrals of the Third Kind. B. C. Carlson. Math-
ematics of Computation, Volume 51, Number 183, July 1988, Pages 267–280. File
S0025-5718-1988-0942154-7.pdf at http://www.ams.org.

[Carlson (1992)] A Table of Elliptic Integrals: Two Quadratic Factors. B. C. Carlson.
Mathematics of Computation, Volume 59, Number 199, July 1992, Pages 165–180.
File S0025-5718-1992-1134720-4.pdf at http://www.ams.org.

[Carlson (1993)] Asymptotic Approximations for Symmetric Elliptic Integrals. B. C.
Carlson and John L. Gustafson. arXiv:math/9310223v1, 7 Oct 1993.

[Carlson, FitzSimons (2000)] Reduction theorems for elliptic integrands with the square
root of two quadratic factors. B. C. Carlson and James FitzSimons. Journal of Com-
putational and Applied Mathematics 118 (2000) 71–85.

[Carlson (2002)] Three Improvements in Reduction and Computation of Elliptic Inte-
grals. B. C. Carlson. Journal of Research of the National Institute of Standards and
Technology, Volume 107, Number 5, September–October 2002.

[Farin (2002)] Curves and Surfaces for CAGD — A Practical Guide. Gerald Farin.
Morgan-Kaufman, 5th ed., 2002.

[FitzSimons (1998)] The length of a Bézier curve is an elliptic integral. Jim FitzSimons.
16 June 1998 (file date). http://www.tinaja.com/glib/bezlenjf.pdf.

10

http://www.dm.unipi.it/cluster-pages/mpsolve/
http://dl.acm.org/citation.cfm?id=355970
http://dl.acm.org/citation.cfm?id=355970
http://www.netlib.org/toms/577
http://www.ams.org
http://www.ams.org
http://www.ams.org
http://www.tinaja.com/glib/bezlenjf.pdf

[Galassi et al. (2013)] GNU Scientific Library, Reference Manual. Mark Galassi, Jim
Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth,
Fabrice Rossi, Rhys Ulerich. Edition 1.16, for GSL Version 1.16, 17 July 2013.

[Gravesen (1997)] Adaptive subdivision and the length and energy of Bézier curves. Jens
Gravesen. Computational Geometry 8 (1997) 13–31.

[Gray (2001)] Automatic Reduction of Elliptic Integrals Using Carlson’s Relations. Nor-
man Gray. Mathematics of Computation, Volume 71, Number 237, 22 July 2001,
Pages 311–318. File S0025-5718-01-01333-3.pdf at http://www.ams.org.

[Gustafson (1982)] Asymptotic formulas for elliptic integrals. John L. Gustafson. Disser-
tation, Iowa State University, Ames, Iowa, 1982.

[Herbison-Evans (2011)] Solving Quartics and Cubics for Graphics. Don Herbison-Evans.
Technical Report TR94-487. Basser Department of Computer Science, University of
Sydney, Australia, updated 31 March 2011.

[Hobby, Hoekwater (2014)] MetaPost 1.990 (TeX Live 2014/dev) (kpathsea version
6.2.0dev). Original author of MetaPost: John Hobby. Author of the CWEB Meta-
Post: Taco Hoekwater.

[Jenkins, Traub (1970)] A Three-Stage Algorithm for Real Polynomials Using Quadratic
Iteration. M. A. Jenkins and J. F. Traub. SIAM J. Numer Anal., Vol. 7, No. 4,
December 1970.

[Jenkins, Traub (Source, 1970)] Subroutine RPOLY (Fortran). M. A. Jenkins and J.
F. Traub. Algorithm 493, File 493.gz, at http://dl.acm.org/citation.cfm?id=

355643 and http://www.netlib.org/toms/493.

[Kraska (1998)] Subroutines for solving cubic, quartic and quintic equations. T. Kraska.
Program quartic.f, download from http://van-der-waals.pc.uni-koeln.de/

quartic/quartic.html.

[NIST DLMF (2014)] NIST Digital Library of Mathematical Functions. http://dlmf.
nist.gov/.

[Olver et al. (2010)] NIST Handbook of Mathematical Functions. Edited by Frank W. J.
Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. NIST National
Institute of Standards and Technology, 2010.

[Orchard, Wilson (1997)] Elliptic Functions for Filter Design. H. J. Orchard, Alan N.
Willson, Jr. IEEE Transactions on Circuits and Systems—I: Fundamental Theory
and Applications, Vol. 44, No. 4, April 1997, pp. 273–287.

[Press et al. (1992)] Numerical Recipes in C — The Art of Scientific Computing. William
H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Cambridge
University Press, Second Edition, 1992.

11

http://www.ams.org
http://dl.acm.org/citation.cfm?id=355643
http://dl.acm.org/citation.cfm?id=355643
http://www.netlib.org/toms/493
http://van-der-waals.pc.uni-koeln.de/quartic/quartic.html
http://van-der-waals.pc.uni-koeln.de/quartic/quartic.html
http://dlmf.nist.gov/
http://dlmf.nist.gov/

	Motivation
	Bézier Curves
	Bézier Arc Length

	Elliptic Integrals
	Root Finding
	Test Setup
	Testing
	Observations

	Conclusion

